Nuclear Medicine Physics

Lecture 4 Gamma Cameras

Mi-Ae Park (miaepark@bwh.harvard.edu)

References :
•RSNA/AAPM Physics Modules
<u>http://www.rsna.org/RSNA/AAPM_Online_Physics_Modules_.aspx</u>
•Physics in Nuclear medicine, 4th ed. by Cherry et al.
•Essentials of Nuclear Medicine Physics and Instrumentation, 3rd ed. by Powsner

General purpose systems

Dual-Head gamma camera

Triple-Head gamma camera

Detector size $\sim 30 - 50$ cm

Dedicated systems

Cardiac system

brain system

Breast-Specific Gamma Imaging (BSGI)

Gamma emitting radionuclides for NM imaging

- Must be able to pass through the body
- Must be detectable

Radionuclide	Energy (keV)	Tracers (2014)	Workhorse of NM
Tc-99m	140	17	80-85% of all NM imaging procedures
TI-201	71, 167, 135	1	
In-111	245, 171	5	
Ga-67	184, 300	1	
I-123	159	3	
I-131	364	2	
Xe-133	81	1	
			·
	Energy range	ב	

Scintillation Crystal

General purpose Gamma ray detector,

- Must have good detection efficiency
- the detector of choice for radionuclides with γ ray emissions in the energy range, 70-360 keV
- Nearly all nuclear imaging devices in routine clinical use utilize Thallium doped Sodium Iodide, NaI (TI),
- a scintillator
- Typical detector thickness : ~ 0.95 cm (3/8 inch)
- Large area crystal with a field of view ~ 50 x 40 cm

Other detectors in NM: Small field of view camera using CZT (Cadmium zinc telluride, CdZnTe) **semiconductor** detectors had been developed.

(dedicated cardiac or breast imaging system)

Camera Design

Preamplifier, Positioning circuit & pulse height analyzer

Determines the location of each scintillation event. Rejects non-photopeak events.

Primary photons travel known paths diverging radially from the focal spot

Emission imaging using a gamma camera

Photons in each volume element of a patient are emitted isotropically (equally in all directions)

- Gamma rays are emitted to all directions
- The detected gamma rays can come from any locations in the body

- Gamma rays are emitted to all directions
- The detected gamma rays can come from any locations in the body

- The collimator allows those gamma rays traveling along certain directions to reach the detector
- The collimator establishes a one-to one correspondence between locations on the detector and those within the organ.

- Made of gamma ray absorbing material, usually lead or tungsten
- Round, square, hexagonal hole shape
- Collimator selection requires consideration of the imaged object's location and size, energy of gamma rays, and desired resolution and sensitivity.
- <u>Usually more than 99.95 % of incident γ rays are absorbed (not detected!!!).</u>

Half value layer (HVL) of lead for 140 keV (Tc-99m) ~ 0.3 mm

Cherry, p. 220 Fig.13-8

Types of Collimators

Powsner, p. 89-90.

Types of Collimators

Converging collimator

Magnified image

Imaging small or medium size organs with a large detector

Diverging collimator

Minified image

Imaging large organ with smaller detector

Types of Collimators

Parallel-hole collimator

For Gamma cameras with pixelated semiconductor detector

D-SPECT cardiac system and detector-head configuration. Sanjiv S. Gambhir et al. J Nucl Med 2009;50:635-643

Parallel-hole Collimator

Three adjustable parameters (typical range)

- d : hole diameter (1 3 mm)
- t : septal thickness (0.1 0.3 mm)

All contribute to image quality

b: distance from the collimator to the source

Scintillation Crystal

 The gamma ray photon interacts with the scintillation detector through the <u>Photoelectric Effect or Compton</u> scattering primarily with the iodide ions of the crystal. → This interaction releases an electron.

- 2. The electrons interact with the crystal lattice (TI) to produce <u>light</u> in a process known as <u>scintillation</u>.
- 3. A flash of light triggers nearby photomultipliers tube (PMT)

Scintillation crystal (detector) converts the gamma ray to visible light!

Photomultiplier tube (PMT)

Electric current pulse to electronics board for positioning and summing circuits PMT turns those visible light photons into an electrical signal

 photocathode will emit electrons by <u>photoelectric effect</u>, after absorbing light photons.

2. The electron multiplier (amplifier), called a dynode, emits several secondary electrons for each incident electron. ~10 - 14 multiplication steps (number of dynodes).

3.Total electrons ~ (#electron amplified)^{#dynode}

4. For each electron liberated from the photocathode, $\sim 10^6$ electrons reach the anode, depending on the number of dynodes

Spatial Localization

Intrinsic spatial resolution

Intrinsic resolution for a large field of view gamma camera, ~ 3.5 mm FWHM at 140 keV (Tc-99m). (**3/8in=9.5mm thick Nal**)

Cherry, p. 228-229

Pulse-height analyzer : Energy Discrimination

Individual events are analyzed for energy by pulse-height analyzer circuit

Energy Discrimination

Compton scattering process : photon gives some energy to electrons

- change direction with reduced energy
- Position information has been lost
 - \rightarrow contribute to noise and reduce contrast
 - \rightarrow Need to get rid of these scattered photons from our final dataset

Scattered photons have reduced energy compared to original emission energy!

→ set gamma camera to accept events that deposit energy close to the photopeak energy

15 % window : 139.5 keV ~ 150.5 keV 20 % window : 133 keV ~ 157 keV

Collimator Characteristics

dual-head gamma camera, AP planar bone scan

Collimator Characteristics : Hole diameter

Small hole diameter

Better spatial resolution Low sensitivity

Large hole diameter

Worse spatial resolution High sensitivity

Collimator Characteristics : Hole diameter

Projected radiation profile (point-spread function)

Collimator Characteristics : Septal length (hole length)

long septa

Low spatial resolution high sensitivity

high spatial resolution Low sensitivity

Collimator Characteristics : Septal thickness

Low energy, Tc99m

Medium energy, In-111

septal penetration : degrade spatial resolution Thicker septa is used for medium and high energy gamma rays

Collimator Characteristics : collimator-object distance

Closer to the collimator

Far from the collimator

High resolution

low resolution

Collimator Characteristics : collimator-object distance

Efficiency of a parallel-hole collimator is constant over the collimator-to-object distances

Collimator resolution

Full width at half maximum (FWHM) of the radiation profile from a point or line source projected by the collimator onto the detector

$$R_{coll} \approx \frac{d(L+b)}{L}$$

<u>Example</u> : Collimator parameters, d=0.25cm, L=2.5cm, t=0.03cm a. Source at b=2cm, R \approx 0.25 (2.5+2)/2.5 = 0.45 cm b. Source at b=10cm, R \approx 0.25 (2.5+10)/2.5 = 1.25 cm

Improvement in resolution means smaller R_{coll}

Collimator Characteristics : Geometric sensitivity

Projected radiation profile (point-spread function)

Collimator Characteristics : Septal length

Short septa

More photons

Less photons

long septa

Collimator geometric sensitivity

Example : d=0.25cm, L=2.5cm, t=0.03cm, and a source at 10 cm.

 $g \approx 0.26^2 (0.25 / 2.5)^2 [0.25 / (0.25+0.03)^2] = 5.4 \times 10^{-4}$

5 out of 10,000 photons are detected!!!

Resolution-Sensitivity trade-off : hole (septa) length, L

High counts BUT not all in the right place

Counts are in the right place BUT not many are detected

AAPM/RSNA

Resolution-Sensitivity trade-off : hole diameter, d

High counts BUT not all in the right place

Counts are in the right place BUT not many are detected

Summary of Collimator Characteristics

Collimator selection requires consideration of imaging object's location and size, energy of gamma rays, and desired resolution and sensitivity.

- Energy : low energy collimator (Tc-99m, TI-201) medium energy collimator (Ga-67, In-111), high energy collimator (I-131)
 → Thicker septa to reduce septal penetration
- Resolution : Low-energy high resolution (LEHR) Low-energy Ultra-high resolution (LEUHR)
- Sensitivity : Medium- or Low-energy general-purpose collimator (MEGP, LEGP) → poor resolution, high sensitivity

Which of the following best completes the sentence.

2. "Using a low energy collimator for a high energy radionuclide _

A) Allows faster scans

- B) Reduces the sensitivity of the detector
- C) Causes the image to be inverted
- D) Increases the field of view but minifies the image
- E) Results in septal penetration

3. Which of the following statements regarding parallel-hole collimators is **correct**?

- A. parallel-hole collimator is placed between the crystal and the PMTs to channel the radiation
- B. A parallel-hole collimator efficiently attenuates the photons colliding with its septa
- C. Septa for Tc-99m imaging must be thicker than that for In-111 imaging
- D. An image made using a parallel hole collimator is magnified with respect to the object

System Resolution

System resolution determined the sharpness of images.

- intrinsic resolution
- Collimator resolution

$$R_{sys} = \sqrt{R_{int}^2 + R_{coll}^2}$$

Example
$$R_{coll}=1.25$$
cm (at 10cm from the collimator) and $R_{int}=0.3$ cm
 $R_{sys} = \sqrt{R_{int}^2 + R_{coll}^2} = \sqrt{1.25^2 + 0.3^3} = 1.29$ cm

determined primarily by collimator resolution

System Sensitivity (efficiency)

in the image

- Product of
 - collimator efficiency (Ec),
 - intrinsic efficiency of the crystal (Ei), and
 - fraction of interacting photons accepted by the pulse-height analyzer (f).
- Intrinsic efficiency is the fraction of photons passing through the collimator that interact with the crystal.

System Efficiency = Ec * Ei * f

Performance Parameters

Important step for the highest image quality

- Extrinsic (system) : measures of the performance with the collimator
- Intrinsic : measures of the performance without the collimator

measure of camera response to uniform irradiation of the detector surface

Extrinsic Uniformity

Daily QC

A syringe source placed at 4-5 times the largest side of the detector (~150 μCi Tc-99m)

Uniformity

Daily : > 2 Mcnts (before patient imaging) Monthly > 30 Mcnts (used for correction)

- Integral uniformity searches the entire flood to find the max and min pixel values
- Differential uniformity looks at changes in pixel values over short segments of the flood (find the highest & lowest pixel values within a five-pixel segment)

Spatial resolution

Intrinsic

extrinsic Co-57 A 2.5 2.0 3.0 3.(в C Bar phantom Acquired image 3.0mm bars visible \rightarrow 1.7 x 3.0 = 5.1 mm Weekly QC 44

Some of 2 mm bars visible \rightarrow 1.7 x 2.2 = 3.7 mm

Count Sensitivity (efficiency)

Fraction of gamma rays emitted by a source that produces counts in the image

System efficiency (Es) = (Ec) * (Ei) * (f)

Ec : collimator efficiency

Ei: intrinsic efficiency

f: fraction of accepted by the energy discrimination circuits

- 150-200 µCi Tc-99m layer in flask.
- Acquire for 2min and obtain the total counts (after background subtraction)

~200 CPM / µCi per detector (LEHR, Tc-99m)

3.3 counts for ~ 37,000 decays

~ detect 1 in 10,000 emitted gammas